The long and winding road to the bionic pancreas

Edward R. Damiano, PhD
Professor, Biomedical Engineering
Boston University
President, Beta Bionics, Inc.
Co-founder and Shareholder, Beta Bionics, Inc.

Board Member, Beta Bionics, Inc.

Member of the Management Team, Beta Bionics, Inc.
Our Bihormonal Bionic Pancreas on the iPhone Platform

Continuous glucose monitor measures glucose levels just under the skin and transmits the data wirelessly to an iPhone.

iPhone receives data and runs an app with an algorithm that computes insulin and glucagon doses.

Dual pump is commanded by iPhone to deliver insulin when glucose levels rise and glucagon when glucose levels fall.
Our Bihormonal Bionic Pancreas on the iPhone Platform

Summer Camp Studies: Summers of 2013 & 2014

- **Beacon Hill Study:** Q1 – Q3 2013
- **Bionic Pancreas Multi-Center Study:** Q2 2014 – Q2 2015
The Clinical Results – Bihormonal Configuration

2013 Summer Camp Study: Summer 2013
32 Teens (12–20 years)
5-Day Experiments

Control
Mean CGM: 158 ± 27 mg/dl
(Projected A1C: 7.1%)
Time < 60 mg/dl: 2.2%
Time > 180 mg/dl: 31%

Bionic Pancreas
Mean CGM: 142 ± 12 mg/dl
(Projected A1C: 6.6%)
Time < 60 mg/dl: 1.3%
Time > 180 mg/dl: 21%

Russell et al. (2014) 371, 313–325
New England Journal of Medicine

2014 Summer Camp Study: Summer 2014
19 Pre-Teens (6–11 years)
5-Day Experiments

Control
Mean CGM: 168 ± 30 mg/dl
(Projected A1C: 7.5%)
Time < 60 mg/dl: 2.8%
Time > 180 mg/dl: 36%

Bionic Pancreas
Mean CGM: 137 ± 11 mg/dl
(Projected A1C: 6.4%)
Time < 60 mg/dl: 1.2%
Time > 180 mg/dl: 17%

Russell et al. (2016) 4, 233–243
The Lancet Diabetes & Endocrinology

Bionic Pancreas Multi-Center Study: Q2 2014 – Q2 2015
39 Adults (≥ 18 years)
11-Day Experiments

Control
Mean CGM: 162 ± 29 mg/dl
(Projected A1C: 7.3%)
Time < 60 mg/dl: 1.9%
Time > 180 mg/dl: 34%

Bionic Pancreas
Mean CGM: 141 ± 10 mg/dl
(Projected A1C: 6.5%)
Time < 60 mg/dl: 0.6%
Time > 180 mg/dl: 20%
The Clinical Results – Bihormonal Configuration

2013 Summer Camp Study: Summer 2013
32 Teens (12–20 years)
5-Day Experiments

32 Teens (12–20 years)
5-Day Experiments

Control
TDD Insulin: 0.79 Units/kg/day
Bionic Pancreas
TDD Insulin: 0.82 Units/kg/day

Russell et al. (2014) 371, 313–325
New England Journal of Medicine

2014 Summer Camp Study: Summer 2014
19 Pre-Teens (6–11 years)
5-Day Experiments

Control
TDD Insulin: 0.68 Units/kg/day
Bionic Pancreas
TDD Insulin: 0.68 Units/kg/day

Russell et al. (2016) 4, 233–243
The Lancet Diabetes & Endocrinology

Bionic Pancreas Multi-Center Study: Q2 2014 – Q2 2015
39 Adults (≥ 18 years)
11-Day Experiments

Control
TDD Insulin: 0.62 Units/kg/day
Bionic Pancreas
TDD Insulin: 0.66 Units/kg/day
The Clinical Results – Bihormonal Configuration

2013 Summer Camp Study: Summer 2013
32 Teens (12–20 years)
5-Day Experiments

Control
Bionic Pancreas
TDD Glucagon:
0.72 mg/day
(11 µg/kg/day)

Russell et al. (2014) 371, 313–325
New England Journal of Medicine

2014 Summer Camp Study: Summer 2014
19 Pre-Teens (6–11 years)
5-Day Experiments

Control
Bionic Pancreas
TDD Glucagon:
0.36 mg/day
(11 µg/kg/day)

Russell et al. (2016) 4, 233–243
The Lancet Diabetes & Endocrinology

Bionic Pancreas Multi-Center Study: Q2 2014 – Q2 2015
39 Adults (≥ 18 years)
11-Day Experiments

Control
Bionic Pancreas
TDD Glucagon:
0.51 mg/day
(7 µg/kg/day)
11 Days on Usual Care – One Subject
11 Days on Bionic Pancreas – One Subject
11 Days on Usual Care – Entire Cohort
11 Days on Bionic Pancreas – Entire Cohort
The bionic pancreas simultaneously solves the 4 greatest concerns of T1D management:

1. It reduces mean blood sugar levels in everyone to levels that would likely eradicate long-term microvascular and neurological complications if implemented at the time of diagnosis.

2. It profoundly curtails mild low blood sugar levels in everyone, and would likely eliminate severe hypoglycemia in people with T1D.

3. It automates blood sugar control for everyone, thus unburdening people with T1D of the relentless need to comply with therapy, as the bionic pancreas itself is the first technology to be entirely compliant with the patient's needs rather than the other way around.

4. It unburdens people with T1D and their families of the emotional hardship that is, for now, part of everyday life, and of the constant fear of hypoglycemia, and of the worry and dread of long-term complications.
11 Days on Usual Care – One Subject
11 Days on Bionic Pancreas – One Subject
Daily Average Glucose on **Bionic Pancreas** versus **Usual Care**

TDD of Insulin on **Bionic Pancreas** versus **Usual Care**
% Difference in Standard Deviation of Daily TDD on Bionic Pancreas Relative to Usual Care

"Do you want to follow your insulin, or do you want your insulin to follow you?"
The Clinical Results – Insulin-Only Configuration

Insulin-Only Stanford Study: Q4 2015 – Q1 2016

16 Adults (≥18 years)
7-Day Experiments

- **Control:**
 - Mean: 151 ± 26 mg/dl
 - 1.9% <60, 26% >180

- **Insulin Only:**
 - Mean: 160 ± 9 mg/dl
 - 0.9% <60, 30% >180

1% <60 mg/dl
5% <60 mg/dl
Our Bihormonal Bionic Pancreas on the iPhone Platform
The iLet™

Carry your glucose metabolism in your pocket.
Next Steps

- Beacon Hill Study: February – September 2013
- Summer Camp Study: Summers of 2013 & 2014
- Bionic Pancreas Multi-Center Study: June 2014 – April 2015
- Bionic Pancreas Set-Point Study: August 2015 – May 2016

- Bionic Pancreas Insulin-Only Bridging Study: Q4 2016

- Phase 2 Insulin-Only–Bihormonal Comparison Study: Q1 2017

- Bionic Pancreas Pivotal Trial (Insulin-Only & Bihormonal): Begins Q2 2017
Clinical Sites for the Bionic Pancreas Pivotal Trial

Northeast Clinical Sites:
- Joslin Diabetes Center (Wolpert)
- Cleveland Clinic (Hatipoglu)
- Naomi Berrie Center (Goland)

Northeast Coordinating Center:
- MGH (Russell)

Southeast Clinical Sites:
- Emory/Children’s Healthcare of Atlanta (Muir)
- Washington University (McCullough)
- UNC, Chapel Hill (Buse)

Southeast Coordinating Center:
- Nemours (Mauras)

Central Clinical Sites:
- U of Texas, Southwestern (White)
- U of Texas, San Antonio (Hale)
- Henry Ford Medical Center (Kruger)

Central Coordinating Center:
- Barbara Davis Center (Maahs)

West Coast Clinical Sites:
- U of Washington (Hirsch)
- UCSD (Henry)
- CHOC (Daniels)

West Coast Coordinating Center:
- Stanford (Buckingham)

National Coordinating Center:
- Jaeb Center (Beck)
ACKNOWLEDGEMENTS

Our Volunteers

Boston University: Engineering, pre-clinical trials, human trials –
Firas El-Khatib Raj Setty Rob LaBourdais John Jiang Kirk Ramey Scott Scohnck Katherine McKeon Niall Kavanagh

MGH: Human trials –
Steven Russell Courtney Flynn Laya Ekhlaspour Kendra Magyar Mallory Hillard Manasi Sinha Mary Larkin David Nathan

Stanford: Human trials –
Bruce Buckingham Trang Ly Paula Clinton Eliana Frank

Clara Barton Center: Summer Camp Studies –
Mark Bissell Lynn Butler Kevin Wilcoxen Beth Rowe

MGH, Stanford, University of Massachusetts, University of North Carolina: Bionic Pancreas Multi-Center Study –
David Harlan Celia Hartigan John Buse Jamie Diner Milana Dezube

Tandem Diabetes Care:
Sean Saint Bob Anacone Kim Blickensstaff Tom Peyser Andy Balo Terry Gregg

SweetSpot Diabetes Care:
Adam Greene Justin Schumacher Liam Pender

Abbott Diabetes Care:
Tim Goodnow Marc Taub Tim Henning Nathan Crouther Erwin Budiman

Insulet Corporation:
Robert Campbell Steve Gemmell Kevin Schmid Rhall Pope Mike Blomquist

Smiths Medical:

Research support provided by:

NIH (NIDDK R01-DK085633, NIDDK R01-DK097657, NIDDK DP-3-DK101084, NIDDK UC4-DK108612, MGH CRC), 2009–present
The Leona M. & Harry B. Helmsley Charitable Trust, 2009–present
The Frederick Banting Foundation, 2012–present
JDRF (Postdoctoral Fellowship, Clinical Investigations Research Grants), 2006–2011
The Wallace H. Coulter Foundation (Translational Partners Grant), 2006–2008