

ADA/EASD Position Statement: Managing Hyperglycemia in Type 2 Diabetes

"Metformin remains the optimal drug for monotherapy. Its low cost, proven safety record, weight neutrality and possible benefits on cardiovascular outcomes have secured its place as the favored initial drug choice.

"Initial combination therapy with metformin plus a second agent may allow patients to achieve HbA1c targets more quickly than sequential therapy.

"A reasonable threshold HbA1c for this consideration is \ge 9%.

Inzucchi SE et al. Diabetologia. Published online April 19, 2012. doi: 10.1007/s00125-012-2534-0.

12 Classes	of Antihyperglycemic
Agents for	T2DM

Class	A _{1c} Reduction	Hypo- glycemia	Weight Change	Dosing (times/day)	Other Safety Issues
Metformin	1.5	No	Neutral	2	GI, lactic acidosis, B12 deficiency
Basal insulin analog	1.5–2.5	Yes	Gain	1, injected	Hypoglycemia
Rapid-acting insulin	1.5–2.5	Yes	Gain	1-4,injected	
Sulfonylureas	1.5	Yes	Gain	1	Allergies, secondary failure
Thiazolidinediones	0.5–1.4	No	Gain	1	Edema, CHF, bone fractures
Short-acting GLP-1 RAs	0.5–1.0	No	Loss	2, injected	GI, ? pancreatitis, ARF
Long-acting GLP-1 RAs	~1.5	No	Loss	1, injected	GI, ? pancreatitis, ?MTC, ?ARF
Repaglinide	1–1.5	Yes	Gain	3	
Nateglinide	0.5–0.8	Rare	Gain	3	
Alpha-glucosidase inhibitors	0.5–0.8	No	Neutral	3	GI
Amylin mimetics	0.5–1.0	No	Loss	3, injected	GI
DPP-4 inhibitors	0.6–0.8	No	Neutral	1	Pancreatitis
Bile acid sequestrant	0.5	No	Neutral	1 or 2	GI
Bromocriptine quick release	0.7	No	Neutral	1	GI
SGLT2s	0.8-1.0	No	Loss	1	Genital mycotic infections

G = gastionnesinial, GLP-1 = globagori-nice peptide-1, KA = 1eceptor agoinst, CHP = Congestive near nationer, KAP = accue relian landre, who = medullary thyroid carcinoma; DPP-4 = dipeptidyl peptidase-4; SGLT2 = sodium-dependent glucose cotransporter -2. Adapted from: Nathan DM, et al. *Diabetes Care.* 2007;30(3):753-759. Nathan DM, et al. *Diabetes Care.* 2006;32(4):1963-1972. Nathan DM, et al. *Diabetes Care.* 2009;32(1):193-203. ADA. *Diabetes Care.* 2008;31:512-554. Buse J, et al. *Lancet.* 2009;374(9683):394-47.

Potential 2-Drug Noninsulin Combinations in the US						
SU/GLN ^a (5 Agents) TZD ^b (2 Agents)	10 4	10	159 Possible Noninsulin Combinations in 2-Drug Regimens			
Which is best? (What about bromocriptine and colesevelam?)						
^a Possible SUs and GLNs include glimepiride, glipizide, glyburide, nateglinide, and repaglinide; ^b Possible TZDs include pioglitazone and rosiglitazone; ^c Possible DPP-4 inhibitors include alogliptin, sitagliptin, linagliptin, and saxagliptin; ^d Possible SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin; ^e Possible GLP-1 RAs include exenatide twice daily, exenatide once weekly, liraglutide, dulaglutide, and albiglutide; ^f Possible metformin drugs include standard and extended release formulations.						

MSB

MSB

Arguments Against Initial Combination Therapy

- Pill burden may decrease adherence
- Costs are higher
- Insurance companies only cover stepped-care
- Polypharmacy may contribute to adverse events

Lowest Available Retail Price of Diabetes Drugs in United States – 2015

Drug	Dose	Price for 1-mo Supply	Retailer
Metformin	1000 mg BID	\$0	Publix
Glimepiride	4 mg QD	\$8	Walmart
Pioglitazone	30 mg QD	\$14.50	Walmart
Sitagliptin	100 mg QD	\$343.37	Publix
Linagliptin	5 mg QD	\$343.38	Publix
Canagliflozin	300 mg QD	\$355.72	Publix
Dapagliflozin	5 mg QD	\$334.59	Publix
Exenatide	10 mcg BID	\$456.09	Walmart
Exenatide QW	2 mg QW	\$489.92	Publix
urce: GoodRx- Downloaded 2015			

